Synthesis of (4)-Chamobtusin A by a
Presumed Biomimetic Aza-Cyclization
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A total synthesis of (+)-chamobtusin A has been accomplished on the basis of our presumed biosynthetic pathway: the imine formation of

keto aldehyde followed by intramolecular aza-Michael addition.

Chamobtusin A (1) was isolated from the branches and leaves
of Chamaecyparis obtusa cv. tetragon by Tan and co-workers
in 2007, and its relative stereochemistry was elucidated
unambiguously by X-ray crystalographic analysis (Figure
1).2 Although Tan reported that chamobtusin A (1) showed
no cytotoxic activities on A549 and K562 human tumor cell
lines, it is expected to possess antitumor, antimalarial, or
antibacterial activities. In addition to that, chamobtusin A
(1) hasanove structure with an unsaturated five-membered
ring including a nitrogen atom. Its unique structure as well
as a possibility of discovering new biologica activities
inspired us to start a synthetic study of chamobtusin A (1).
Herein, we report afirst total synthesis of (+)-chamobtusin
A (1) based on a presumed biosynthetic pathway.

Our proposed biosynthetic route and retrosynthetic plan
of chamobtusin A (1) are shown in Scheme 1. Oxidative
cleavage of benzene ring of C? with a well-known abietane
skeleton would generate keto aldehyde B. In the presence
of ammonia, B would be transformed into imine A, and
subsequent Michael addition of the nitrogen atom to C8
position would produce chamobtusin A. In our synthesis,
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Figure 1. Structure and numbering of chamobtusin A.

we selected aza-Michael addition® as a key reaction. Inter-
mediate B would be synthesized from D by introducing
aldehyde unit at C11 position followed by side-chain
elongation at C13. D would be obtained from known
achohol E,* which can be easily prepared by Diels—Alder
reaction of diene F and dimethyl acetylenedicarboxylate (G)
followed by hydroboration—oxidation.
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Scheme 1. Presumed Biosynthesis and Retrosynthesis of
Chamobtusin A

Presumed biosynthesis
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The first stage of the synthesis is shown in Scheme 2. As
mentioned above, we selected known alchohol 2* (= E) as

Scheme 2. First Stage of the Synthesis
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treatment with n-BusSnH and AIBN, and the resulting diester
was reduced with DIBAL to give diol 3° in high yield. The
less hindered primary achohol of 3 was selectively protected
as the TBS ether. mCPBA oxidation of the double bond
gave a mixture of a- and B-epoxides’ in a ratio of 2.1:1,
which were separated by silicagel column chromatography,
and the major a-epoxide 4 was used in the next reaction.
After TPAP oxidation® of the primary hydroxy group of 4,
Wittig reaction of the resulting aldehyde with the ylide
generated from (methoxymethy!)triphenyl phosphonium chlo-
ride and n-BuLi afforded enol ether 5 in which the geometry
of the double bond was completely Z (J;112 = 6.6 Hz).
The completion of the synthesis was performed as shown
in Scheme 3. The TBS group of 5 was removed with TBAF,

Scheme 3. Completion of the Synthesis
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and the liberated primary achohol was oxidized with
Dess—Martin periodinane® to give cyclic product 6 in which
reaction, eliminative epoxide opening, and acetalization

a starting material. The hydroxy group of 2 was converted
into thiocarbamate, which was then deoxygenated® by
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might have been promoted by acetic acid generated in situ.
Fortunately, by this unexpected cyclization, the desired Z
geometry of the newly generated C9—C11 double bond of
6 could be controlled. Horner—Wadsworth—Emmons reac-
tion of 6 with phosphonate 7*° gave 8 (o/f8 = 4:1), whose
stereochemistries were determined by NOE experiments as
shown in Figure 2. To our delight, 8 could be converted

OSiMe,-Bu

%H Eto,C

a-isomer of 8

B-isomer of 8

Figure 2. NOE correlations of 8.

directly into the cyclization precursor 9 by treatment with
MeLi. The alkoxide generated by the addition of 2 equiv of
MeLi trapped the neighboring TBS group, and subsequent
ring-opening of methyl acetal gave desired keto aldehyde 9
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(E/Z = 4:1) in 72% yield. Aswe expected, imine formation
and subsequent intramolecular aza-Michagl addition smoothly
proceeded from both geometrical isomers of 9 by treatment
with ammoniain the presence of acetic acid to afford 10 as
a single diastereomer (65% from E isomer, 60% from Z
isomer).

Finally, the TBS group was removed with TBAF to give
(£)-chamobtusin A. *H NMR and *C NMR spectra of our
synthetic 1 werein good accordance with those of the natural
compound.

In conclusion, we achieved a first total synthesis of (+)-
chamobtusin A based on a presumed biomimetic pathway.
The overall yield of 1 starting from 2 was 5.3% in 13 steps.
To determine the absolute configuration of the natural
product, synthetic study of optically active chamobtusin A
from natural abietane diterpenoid (C — B — 1) isnow in
progress and the results will be reported in due course.
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