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ABSTRACT

A total synthesis of (()-chamobtusin A has been accomplished on the basis of our presumed biosynthetic pathway: the imine formation of
keto aldehyde followed by intramolecular aza-Michael addition.

Chamobtusin A (1) was isolated from the branches and leaves
of Chamaecyparis obtusa cv. tetragon by Tan and co-workers
in 2007, and its relative stereochemistry was elucidated
unambiguously by X-ray crystallographic analysis (Figure
1).1 Although Tan reported that chamobtusin A (1) showed
no cytotoxic activities on A549 and K562 human tumor cell
lines, it is expected to possess antitumor, antimalarial, or
antibacterial activities. In addition to that, chamobtusin A
(1) has a novel structure with an unsaturated five-membered
ring including a nitrogen atom. Its unique structure as well
as a possibility of discovering new biological activities
inspired us to start a synthetic study of chamobtusin A (1).
Herein, we report a first total synthesis of (()-chamobtusin
A (1) based on a presumed biosynthetic pathway.

Our proposed biosynthetic route and retrosynthetic plan
of chamobtusin A (1) are shown in Scheme 1. Oxidative
cleavage of benzene ring of C2 with a well-known abietane
skeleton would generate keto aldehyde B. In the presence
of ammonia, B would be transformed into imine A, and
subsequent Michael addition of the nitrogen atom to C8
position would produce chamobtusin A. In our synthesis,

we selected aza-Michael addition3 as a key reaction. Inter-
mediate B would be synthesized from D by introducing
aldehyde unit at C11 position followed by side-chain
elongation at C13. D would be obtained from known
alchohol E,4 which can be easily prepared by Diels-Alder
reaction of diene F and dimethyl acetylenedicarboxylate (G)
followed by hydroboration-oxidation.
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Figure 1. Structure and numbering of chamobtusin A.
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The first stage of the synthesis is shown in Scheme 2. As
mentioned above, we selected known alchohol 24 () E) as

a starting material. The hydroxy group of 2 was converted
into thiocarbamate, which was then deoxygenated5 by

treatment with n-Bu3SnH and AIBN, and the resulting diester
was reduced with DIBAL to give diol 36 in high yield. The
less hindered primary alchohol of 3 was selectively protected
as the TBS ether. m-CPBA oxidation of the double bond
gave a mixture of R- and �-epoxides7 in a ratio of 2.1:1,
which were separated by silica gel column chromatography,
and the major R-epoxide 4 was used in the next reaction.
After TPAP oxidation8 of the primary hydroxy group of 4,
Wittig reaction of the resulting aldehyde with the ylide
generated from (methoxymethyl)triphenylphosphonium chlo-
ride and n-BuLi afforded enol ether 5 in which the geometry
of the double bond was completely Z (J11,12 ) 6.6 Hz).

The completion of the synthesis was performed as shown
in Scheme 3. The TBS group of 5 was removed with TBAF,

and the liberated primary alchohol was oxidized with
Dess-Martin periodinane9 to give cyclic product 6 in which
reaction, eliminative epoxide opening, and acetalization
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Scheme 1. Presumed Biosynthesis and Retrosynthesis of
Chamobtusin A

Scheme 2. First Stage of the Synthesis

Scheme 3. Completion of the Synthesis
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might have been promoted by acetic acid generated in situ.
Fortunately, by this unexpected cyclization, the desired Z
geometry of the newly generated C9-C11 double bond of
6 could be controlled. Horner-Wadsworth-Emmons reac-
tion of 6 with phosphonate 710 gave 8 (R/� ) 4:1), whose
stereochemistries were determined by NOE experiments as
shown in Figure 2. To our delight, 8 could be converted

directly into the cyclization precursor 9 by treatment with
MeLi. The alkoxide generated by the addition of 2 equiv of
MeLi trapped the neighboring TBS group, and subsequent
ring-opening of methyl acetal gave desired keto aldehyde 9

(E/Z ) 4:1) in 72% yield. As we expected, imine formation
and subsequent intramolecular aza-Michael addition smoothly
proceeded from both geometrical isomers of 9 by treatment
with ammonia in the presence of acetic acid to afford 10 as
a single diastereomer (65% from E isomer, 60% from Z
isomer).

Finally, the TBS group was removed with TBAF to give
(()-chamobtusin A. 1H NMR and 13C NMR spectra of our
synthetic 1 were in good accordance with those of the natural
compound.

In conclusion, we achieved a first total synthesis of (()-
chamobtusin A based on a presumed biomimetic pathway.
The overall yield of 1 starting from 2 was 5.3% in 13 steps.
To determine the absolute configuration of the natural
product, synthetic study of optically active chamobtusin A
from natural abietane diterpenoid (C f Β f 1) is now in
progress and the results will be reported in due course.

Acknowledgment. This work was supported by a Grant-
in-Aid for Young Scientists (B) (No. 21780108) from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan.

Supporting Information Available: Experimental pro-
cedures and 1H and 13C NMR spectra for new compounds.
This material is available free of charge via the Internet at
http://pubs.acs.org.

OL101846Z

(8) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis
1994, 639–666.

(9) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.
(10) Krafft, G. A.; Garcia, E. A.; Guram, A.; O’Shaughnessy, B.; Xu,

X. Tetrahedron Lett. 1986, 27, 2691–2694.

Figure 2. NOE correlations of 8.
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